Evidence from renal proximal tubules that HCO3- and solute reabsorption are acutely regulated not by pH but by basolateral HCO3- and CO2.

نویسندگان

  • Yuehan Zhou
  • Jinhua Zhao
  • Patrice Bouyer
  • Walter F Boron
چکیده

Respiratory acidosis, a decrease in blood pH caused by a rise in [CO(2)], rapidly triggers a compensatory response in which the kidney markedly increases its secretion of H(+) from blood to urine. However, in this and other acid-base disturbances, the equilibrium CO(2) + H(2)O HCO(3)(-) + H(+) makes it impossible to determine whether the critical parameter is [CO(2)], [HCO(3)(-)], and/or pH. Here, we used out-of-equilibrium CO(2)/HCO(3)(-) solutions to alter basolateral (BL) [HCO(3)(-)], [CO(2)], or pH, systematically and one at a time, on isolated perfused S2 rabbit proximal tubules. We found that increasing [HCO(3)(-)](BL) from 0 to 44 mM, at a fixed [CO(2)](BL) of 5% and a fixed pH(BL) of 7.40, caused HCO(3)(-) reabsorption (J(HCO(3))) to fall by half but did not significantly affect volume reabsorption (J(V)). Increasing [CO(2)](BL) from 0% to 20%, at a fixed [HCO(3)(-)](BL) of 22 mM and pH(BL) of 7.40, caused J(HCO(3)) to rise 2.5-fold but did not significantly affect J(V). Finally, increasing pH(BL) from 6.80 to 8.00, at a fixed [HCO(3)(-)](BL) of 22 mM and [CO(2)](BL) of 5%, did not affect either J(HCO(3)) or J(V). Analysis of the J(HCO(3)) and J(V) data implies that, as the tubule alters J(HCO(3)), it compensates the reabsorption of other solutes to keep J(V) approximately constant. Because the cells cannot respond acutely to pH changes, we propose that the responses of J(HCO(3)) and the reabsorption of other solutes to changes in [HCO(3)(-)](BL) or [CO(2)](BL) involve sensors for basolateral HCO(3)(-) and CO(2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of isolated removal of either basolateral HCO-3 or basolateral CO2 on HCO-3 reabsorption by rabbit S2 proximal tubule.

The equilibrium CO2+H2O right arrow over left arrow H++HCO3- had made it impossible to determine how isolated changes in basolateral CO2 ([CO2]) or HCO3- concentration ([HCO3-]), at a fixed basolateral pH, modulate renal HCO3- or reabsorption. In the present study, we have begun to address this issue by measuring HCO3- reabsorption (JHCO3) and intracellular pH (pHi) in isolated perfused rabbit ...

متن کامل

Acid-base transport by the renal proximal tubule.

One of the major tasks of the renal proximal tubule is to secrete acid into the tubule lumen, thereby reabsorbing approximately 80% of the filtered HCO3- as well as generating new HCO3- for regulating blood pH. This review summarizes the cellular and molecular events that underlie four major processes in HCO3- reabsorption. The first is CO2 entry across the apical membrane, which in large part ...

متن کامل

Effect of basolateral CO2/HCO3- on intracellular pH regulation in the rabbit S3 proximal tubule

We used the absorbance spectrum of the pH-sensitive dye dimethylcarboxyfluorescein to monitor intracellular pH (pHi) in the isolated perfused S3 segment of the rabbit proximal tubule, and examined the effect on pHi of switching from a HEPES to a CO2/HCO3- buffer in the lumen and/or the bath (i.e., basolateral solution). Solutions were titrated to pH 7.40 at 37 degrees C. With 10 mM acetate pres...

متن کامل

An increase in intracellular calcium concentration that is induced by basolateral CO2 in rabbit renal proximal tubule.

Working with isolated perfused S2 proximal tubules, we asked whether the basolateral CO2 sensor acts, in part, by raising intracellular Ca2+ concentration ([Ca2+]i), monitored with the dye fura 2 (or fura-PE3). In paired experiments, adding 5% CO2/22 mM HCO3- (constant pH 7.40) to the bath (basolateral) solution caused [Ca2+]i to increase from 57 +/- 3 to 97 +/- 9 nM(n = 8, P < 0.002), whereas ...

متن کامل

Delivery dependence of early proximal bicarbonate reabsorption in the rat in respiratory acidosis and alkalosis.

In the intact rat kidney, bicarbonate reabsorption in the early proximal tubule (EP) is strongly dependent on delivery. Independent of delivery, metabolic acidosis stimulates EP bicarbonate reabsorption. In this study, we investigated whether systemic pH changes induced by acute or chronic respiratory acid-base disorders also affect EP HCO3- reabsorption, independent of delivery (FLHCO3, filter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 10  شماره 

صفحات  -

تاریخ انتشار 2005